skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Uesbeck, P. Merlin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Polyglot programming, the use of multiple programming languages during the development process, is common practice in modern software development. This study investigates this practice through a randomized controlled trial conducted under the context of database programming. Participants in the study were given coding tasks written in Java and one of three SQL-like embedded languages. One was plain SQL in strings, one was in Java only, and the third was a hybrid embedded language that was closer to the host language. We recorded 109 valid data points. Results showed significant differences in how developers of different experience levels code using polyglot techniques. Notably, less experienced programmers wrote correct programs faster in the hybrid condition (frequent, but less severe, switches), while more experienced developers that already knew both languages performed better in traditional SQL (less frequent, but more complete, switches). The results indicate that the productivity impact of polyglot programming is complex and experience level dependent. 
    more » « less
  2. null (Ed.)
  3. Scientific computing has become an area of growing importance. Across fields such as biology, education, physics, or others, people are increasingly using scientific computing to model and understand the world around them. Despite the clear need, almost no systematic analysis has been conducted on how students in fields outside of computer science learn to program in the context of scientific computing. Given that many fields do not explicitly teach much programming to their students, they may have to learn this important skill on their own. To help, using rigorous quantitative and qualitative methods, we looked at the process 154 students followed in the context of a randomized controlled trial on alternative styles of programming that can be used in R. Our results suggest that the barriers students face in scientific computing are non-trivial and this work has two core implications: 1) students learning scientific computing on their own struggle significantly in many different ways, even if they have had prior programming training, and 2) the design of the current generation of scientific computing feels like the wild-wild west and the designs can be improved in ways we will enumerate. 
    more » « less